Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\def\versionnumber{1.54}
\def\JPicScale{0.7}
\def\versionyear{2018}
\def\JPicScale{0.7}
\def\versionmonth{July \versionyear}
\def\JPicScale{0.7}
\def\JPicScale{0.7}
\newcommand{\ix}[1]{#1\index{#1}}
\def\JPicScale{0.7}
\newcommand{\Z}{\mathbb{Z}}
\def\JPicScale{0.7}
\newcommand{\Q}{\mathbb{Q}}
\def\JPicScale{0.6}
\newcommand{\R}{\mathbb{R}}
\def\JPicScale{0.6}
\newcommand{\C}{\mathbb{C}}
\def\s{\sum_{k \geq 0}}
\newcommand{\N}{\mathbb{N}}
\def\sz{\sum_{ k \in \Z }}
\newcommand{\Chat}{\hat\C}
\def\JPicScale{0.7}
\newcommand{\Rhat}{\hat\R}
\def\i{\int_\gg}
\newcommand{\gd}{\delta}
\def\JPicScale{0.7}
\renewcommand{\gg}{\gamma}
\newcommand{\D}{\Delta}
\newcommand{\Dp}{\check{D}}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\fLog}{\mathcal{L}\!og}
\DeclareMathOperator{\fArg}{\mathcal{A}rg}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Arg}{Arg}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Re}{Re}
\def\sz{\sum_{ k \in \Z }}
\def\s{\sum_{k \geq 0}}
\DeclareMathOperator{\Res}{Res}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\Def}[1]{\textbf{#1}}
\newcommand{\hint}[1]{(\emph{Hint}: #1)}
\newcommand{\histremark}[1]{}
\newcommand{\histremarktwo}[2]{}
\newcommand{\listset}[1]{\left\{#1\right\}}
\newcommand{\makeset}[2]{\listset{#1\colon\,#2}}
\newcommand{\listseq}[1]{\left\langle#1\right\rangle}
\newcommand{\makeseq}[2]{\listseq{#1\colon\,#2}}
\newcommand{\ds}{\displaystyle}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\zbar}{\overline{z}}
\def\o{\overline}
\newcommand{\fderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\sderiv}[2]{\frac{\partial^2 #1}{\partial #2^2}}
\newcommand{\mderiv}[3]{\frac{\partial^2 #1}{\partial #2 \, \partial #3}}
\newcommand{\mat}[1]{\displaystyle\begin{bmatrix} #1 \end{bmatrix}}
\newcommand{\disp}[1]{$\displaystyle#1$}
\renewcommand{\th}{^{ th}}
\newcommand{\boldcdot}{\boldsymbol{\cdot}}
\newcommand{\diff}[1]{{d#1}}
\newcommand{\itref}[1]{\eqref{#1}}
\def\newnotes{
\begin{remarks}
\thenotes.
}
\def\writenote{
\vspace{10pt} \thenotes.
}
\newcommand{\putqed}{\pushQED{\qed}\popQED}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\newcommand{\fillinmath}[1]{\mathchoice{\underline{\displaystyle \phantom{\ \,#1\ \,}}}{\underline{\textstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptscriptstyle\phantom{\ \,#1\ \,}}}}
\)
Exercises 9.4 Exercises
1.
Suppose that
\(f\) has a zero of multiplicity
\(m\) at
\(a\text{.}\) Explain why
\(\frac 1 f\) has a pole of order
\(m\) at
\(a\text{.}\)
2.
Find the poles or removable singularities of the following functions and determine their orders:
(a)
\((z^2+1)^{-3}(z-1)^{-4}\)
(b)
(c)
(d)
\(\ds \frac1{1-\exp(z)}\)
(e)
\(\ds \frac z{1-\exp(z)}\)
3.
Suppose
\(f\) is a nonconstant entire function. Prove that any complex number is arbitrarily close to a number in
\(f(\C)\text{.}\)
Hint .
If
\(f\) is not a polynomial, use
Theorem 9.1.9 for
\(f (\frac 1 z)\text{.}\)
4.
Evaluate the following integrals for
\(\gg = C[0,3]\text{.}\)
(a)
\(\displaystyle \i \cot (z) \, \diff{z}\)
(b)
\(\displaystyle \i z^3 \cos ( \tfrac 3 z )\, \diff{z}\)
(c)
\(\displaystyle \i \frac{ \diff{z} }{ (z+4) ( z^2 + 1 ) }\)
(d)
\(\displaystyle \i z^2 \exp ( \tfrac 1 z )\, \diff{z}\)
(e)
\(\displaystyle \i \frac{ \exp (z) }{ \sinh (z) } \, \diff{z}\)
(f)
\(\displaystyle \i \frac{ i^{z+4} }{ (z^2 + 16)^2 } \, \diff{z}\)
5.
Suppose \(f\) has a simple pole (i.e., a pole of order 1) at \(z_0\) and \(g\) is holomorphic at \(z_0\text{.}\) Prove that
\begin{equation*}
\Res_{z=z_0} \bigl( f(z) \, g(z) \bigr) \ = \ g(z_0) \,
\Res_{z=z_0} \bigl( f(z) \bigr) \, \text{.}
\end{equation*}
6.
Find the residue of each function at
\(0\text{:}\)
(a)
(b)
(c)
\(\frac{z^2+4z+5}{z^2+z}\)
(d)
(e)
\(\frac{\exp(4z)-1}{\sin^2(z)}\)
7.
Use residues to evaluate the following integrals:
(a)
\(\ds \int_{ C[i-1,1] }\frac{\diff{z}}{z^4+4}\)
(b)
\(\ds \int_{ C[i,2] }\frac{\diff{z}}{z(z^2+z-2)}\)
(c)
\(\ds \int_{ C[0,2] }\frac{\exp(z)}{z^3+z}\diff{z}\)
(d)
\(\ds \int_{ C[0,1] }\frac{\diff{z}}{z^2\sin z}\)
(e)
\(\ds \int_{ C[0,3] }\frac{\exp(z)}{(z+2)^2 \sin z}
\diff{z}\)
(f)
\(\ds \int_{ C[\pi,1] } \frac{ \exp(z) }{ \sin(z) \cos(z) }
\diff{z}\)
8.
9.
Revisiting
Exercise 8.4.34 show that if
\(f\) is even then
\(\Res_{ z=0 } (f(z)) =
0\text{.}\)
10.
Suppose
\(f\) has an isolated singularity at
\(z_0\text{.}\)
(a)
Show that
\(f'\) also has an isolated singularity at
\(z_0\text{.}\)
(b)
Find
\(\Res_{z=z_0} (f')\text{.}\)
11.
Extend
Proposition 9.2.7 by proving, if
\(f\) and
\(g\) are holomorphic at
\(z_0\text{,}\) which is a double zero of
\(g\text{,}\) then
\begin{equation*}
\Res_{z=z_0} \left( \frac{ f(z) }{ g(z) } \right) \ = \ \frac{
6 \, f'(z_0) \, g''(z_0) - 2 \, f(z_0) \, g'''(z_0) }{ 3 \,
g''(z_0)^2 } \, \text{.}
\end{equation*}
12.
Compute
\(\ds \int_{ C[2,3] } \frac{ \cos(z) }{ \sin^2(z) }
\,\diff{z} \text{.}\)
13.
Generalize
Example 5.3.5 and
Exercise 5.4.18 as follows: Let
\(p(x)\) and
\(q(x)\) be polynomials such that
\(q(x) \ne 0\) for
\(x \in \R\) and the degree of
\(q(x)\) is at least two larger than the degree of
\(p(x)\text{.}\) Prove that
\(\int_{ -\infty }^\infty \frac{ p(x) }{ q(x) } \,
\diff{x}\) equals
\(2 \pi i\) times the sum of the residues of
\(\frac{ p(z) }{ q(z) }\) at all poles in the upper half plane.
14.
Compute
\(\ds \int_{-\infty}^\infty \frac{ \diff{x} }{
(1+x^2)^2 } \text{.}\)
15.
Generalize
Exercise 5.4.19 by deriving conditions under which we can compute
\(\int_{ -\infty }^\infty \frac{ p(x) \cos(x) }{ q(x) } \,
\diff{x}\) for polynomials
\(p(x)\) and
\(q(x)\text{,}\) and give a formula for this integral along the lines of
Exercise 9.4.13 .
16.
Compute
\(\ds \int_{-\infty}^\infty \frac{ \sin(x) }{ 1+x^4 }
\, \diff{x} \text{.}\)
17.
Suppose \(f\) is entire and \(a,
b \in \C\) with \(a \ne b\) and \(|a|, |b| \lt R\text{.}\) Evaluate
\begin{equation*}
\int_{ C[0,R] } \frac{ f(z) }{ (z-a)(z-b) } \, \diff{z}
\end{equation*}
Hint .
Show that if
\(f\) is bounded then the above integral goes to zero as
\(R\) increases.
18.
19.
Suppose \(f\) is meromorphic in the region \(G\text{,}\) \(g\) is holomorphic in \(G\text{,}\) and \(\gg\) is a positively oriented, simple, closed, piecewise smooth path that does not pass through any zero or pole of \(f\text{,}\) and \(\gg \sim_G 0\text{.}\) Denote the zeros and poles of \(f\) inside \(\gg\) by \(z_1, \dots,
z_j\) and \(p_1, \dots,
p_k\text{,}\) respectively, counted according to multiplicity. Prove that
\begin{equation*}
\frac{1}{2 \pi i} \i g \, \frac{f'}{f} \ = \ \sum_{m=1}^j
g(z_m) - \sum_{n=1}^k g(p_n) \, \text{.}
\end{equation*}
20.
Find the number of zeros of
(a)
\(3 \exp (z) - z\) in
\(\overline D[0,1]\)
(b)
\(\frac 1 3 \exp (z) - z\) in
\(\overline D[0,1]\)
(c)
\(z^4 - 5 z + 1\) in
\(\{ z \in \C : \, 1 \leq |z| \leq 2 \}\)
21.
Hint .
If
\(p(z) = a_n
z^n + a_{n-1} z^{n-1} + \dots + a_1 z + 1\text{,}\) let
\(f(z) = a_n z^n\) and
\(g(z) = a_{n-1} z^{n-1} +
a_{n-2} z^{n-2} + \dots + a_1 z + 1\text{,}\) and choose as
\(\gg\) a circle that is large enough to make the condition of Rouché’s theorem work. You might want to first apply
Proposition 5.3.1 to
\(g(z)\text{.}\)
22.
Suppose
\(S\subset\C\) is closed and bounded and all points of
\(S\) are isolated points of
\(S\text{.}\) Show that
\(S\) is finite, as follows:
(a)
For each
\(z\in S\) we can choose
\(\phi(z)>0\) so that
\(D[z,\phi(z)]\) contains no points of
\(S\) except
\(z\text{.}\) Show that
\(\phi\) is continuous.
Hint .
This is really easy if you use the
first definition of continuity in
Section 2.1 .
(b)
Assume
\(S\) is non-empty. By the Extreme Value
Theorem A.0.1 ,
\(\phi\) has a minimum value,
\(r_0>0\text{.}\) Let
\(r=r_0/2\text{.}\) Since
\(S\) is bounded, it lies in a disk
\(D[0,M]\) for some
\(M\text{.}\) Show that the small disks
\(D[z,r]\text{,}\) for
\(z\in S\text{,}\) are disjoint and lie in
\(D[0,M+r]\text{.}\)
(c)
Find a bound on the number of such small disks.
Hint .
Compare the areas of
\(D[z,r]\) and
\(D[0,M+r]\text{.}\)