Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\def\versionnumber{1.54}
\def\JPicScale{0.7}
\def\versionyear{2018}
\def\JPicScale{0.7}
\def\versionmonth{July \versionyear}
\def\JPicScale{0.7}
\def\JPicScale{0.7}
\newcommand{\ix}[1]{#1\index{#1}}
\def\JPicScale{0.7}
\newcommand{\Z}{\mathbb{Z}}
\def\JPicScale{0.7}
\newcommand{\Q}{\mathbb{Q}}
\def\JPicScale{0.6}
\newcommand{\R}{\mathbb{R}}
\def\JPicScale{0.6}
\newcommand{\C}{\mathbb{C}}
\def\s{\sum_{k \geq 0}}
\newcommand{\N}{\mathbb{N}}
\def\sz{\sum_{ k \in \Z }}
\newcommand{\Chat}{\hat\C}
\def\JPicScale{0.7}
\newcommand{\Rhat}{\hat\R}
\def\i{\int_\gg}
\newcommand{\gd}{\delta}
\def\JPicScale{0.7}
\renewcommand{\gg}{\gamma}
\newcommand{\D}{\Delta}
\newcommand{\Dp}{\check{D}}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\fLog}{\mathcal{L}\!og}
\DeclareMathOperator{\fArg}{\mathcal{A}rg}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Arg}{Arg}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Re}{Re}
\def\sz{\sum_{ k \in \Z }}
\def\s{\sum_{k \geq 0}}
\DeclareMathOperator{\Res}{Res}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\Def}[1]{\textbf{#1}}
\newcommand{\hint}[1]{(\emph{Hint}: #1)}
\newcommand{\histremark}[1]{}
\newcommand{\histremarktwo}[2]{}
\newcommand{\listset}[1]{\left\{#1\right\}}
\newcommand{\makeset}[2]{\listset{#1\colon\,#2}}
\newcommand{\listseq}[1]{\left\langle#1\right\rangle}
\newcommand{\makeseq}[2]{\listseq{#1\colon\,#2}}
\newcommand{\ds}{\displaystyle}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\zbar}{\overline{z}}
\def\o{\overline}
\newcommand{\fderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\sderiv}[2]{\frac{\partial^2 #1}{\partial #2^2}}
\newcommand{\mderiv}[3]{\frac{\partial^2 #1}{\partial #2 \, \partial #3}}
\newcommand{\mat}[1]{\displaystyle\begin{bmatrix} #1 \end{bmatrix}}
\newcommand{\disp}[1]{$\displaystyle#1$}
\renewcommand{\th}{^{ th}}
\newcommand{\boldcdot}{\boldsymbol{\cdot}}
\newcommand{\diff}[1]{{d#1}}
\newcommand{\itref}[1]{\eqref{#1}}
\def\newnotes{
\begin{remarks}
\thenotes.
}
\def\writenote{
\vspace{10pt} \thenotes.
}
\newcommand{\putqed}{\pushQED{\qed}\popQED}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\newcommand{\fillinmath}[1]{\mathchoice{\underline{\displaystyle \phantom{\ \,#1\ \,}}}{\underline{\textstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptscriptstyle\phantom{\ \,#1\ \,}}}}
\)
Section 10.1 Infinite Sums
In this exercise, we evaluate the sums
\(\sum_{k \geq 1} \frac 1 {k^2}\) and
\(\sum_{k \geq 1} \frac{
(-1)^k }{k^2}\text{.}\) We hope the idea of how to compute such sums in general will become clear.
Consider the function
\(f(z) = \frac{ \pi \cot (\pi z) }{ z^2
}\text{.}\) Compute the residues at all the singularities of
\(f\text{.}\)
Let
\(N\) be a positive integer and
\(\gamma_N\) be the rectangular path from
\(N+\frac 1 2
-iN\) to
\(N+\frac 1 2 +iN\) to
\(-N-\frac 1 2 +iN\) to
\(-N-\frac 1 2 -iN\) back to
\(N+\frac 1 2 -iN\text{.}\)
Show that
\(| \cot (\pi z) | \lt 2\) for
\(z \in \gamma_N\text{.}\) (
Hint : Use
Exercise 3.6.35 .)
Show that
\(\lim_{N \to \infty} \int_{\gamma_N} f = 0\text{.}\)
Use the Residue
Theorem 9.2.2 to arrive at an identity for
\(\sum_{k \in \Z \setminus
\{0\}} \frac 1 {k^2}\text{.}\)
Evaluate
\(\sum_{k \geq 1} \frac 1 {k^2}\text{.}\)
Repeat the exercise with the function \(f(z) = \frac{ \pi }{ z^2 \sin (\pi z) }\) to arrive at an evaluation of
\begin{equation*}
\sum_{k \geq 1} \frac{ (-1)^k }{k^2} \,\text{.}
\end{equation*}
(Hint : To bound this function, you may use the fact that \(\frac 1 {\sin^2(z)} = 1 +
\cot^2(z)\text{.}\) )
Evaluate
\(\sum_{k \geq 1} \frac 1 {k^4}\) and
\(\sum_{k
\geq 1} \frac{ (-1)^k }{k^4}\text{.}\)
We remark that, in the language of
Example 7.2.17 , you have computed the evaluations
\(\zeta(2)\) and
\(\zeta(4)\) of the Riemann zeta function. The function
\(\zeta^*(z) := \sum_{k \geq 1} \frac{ (-1)^k
}{k^z}\) is called the
alternating zeta function .