Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\def\versionnumber{1.54}
\def\JPicScale{0.7}
\def\versionyear{2018}
\def\JPicScale{0.7}
\def\versionmonth{July \versionyear}
\def\JPicScale{0.7}
\def\JPicScale{0.7}
\newcommand{\ix}[1]{#1\index{#1}}
\def\JPicScale{0.7}
\newcommand{\Z}{\mathbb{Z}}
\def\JPicScale{0.7}
\newcommand{\Q}{\mathbb{Q}}
\def\JPicScale{0.6}
\newcommand{\R}{\mathbb{R}}
\def\JPicScale{0.6}
\newcommand{\C}{\mathbb{C}}
\def\s{\sum_{k \geq 0}}
\newcommand{\N}{\mathbb{N}}
\def\sz{\sum_{ k \in \Z }}
\newcommand{\Chat}{\hat\C}
\def\JPicScale{0.7}
\newcommand{\Rhat}{\hat\R}
\def\i{\int_\gg}
\newcommand{\gd}{\delta}
\def\JPicScale{0.7}
\renewcommand{\gg}{\gamma}
\newcommand{\D}{\Delta}
\newcommand{\Dp}{\check{D}}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\fLog}{\mathcal{L}\!og}
\DeclareMathOperator{\fArg}{\mathcal{A}rg}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Arg}{Arg}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Re}{Re}
\def\sz{\sum_{ k \in \Z }}
\def\s{\sum_{k \geq 0}}
\DeclareMathOperator{\Res}{Res}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\Def}[1]{\textbf{#1}}
\newcommand{\hint}[1]{(\emph{Hint}: #1)}
\newcommand{\histremark}[1]{}
\newcommand{\histremarktwo}[2]{}
\newcommand{\listset}[1]{\left\{#1\right\}}
\newcommand{\makeset}[2]{\listset{#1\colon\,#2}}
\newcommand{\listseq}[1]{\left\langle#1\right\rangle}
\newcommand{\makeseq}[2]{\listseq{#1\colon\,#2}}
\newcommand{\ds}{\displaystyle}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\zbar}{\overline{z}}
\def\o{\overline}
\newcommand{\fderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\sderiv}[2]{\frac{\partial^2 #1}{\partial #2^2}}
\newcommand{\mderiv}[3]{\frac{\partial^2 #1}{\partial #2 \, \partial #3}}
\newcommand{\mat}[1]{\displaystyle\begin{bmatrix} #1 \end{bmatrix}}
\newcommand{\disp}[1]{$\displaystyle#1$}
\renewcommand{\th}{^{ th}}
\newcommand{\boldcdot}{\boldsymbol{\cdot}}
\newcommand{\diff}[1]{{d#1}}
\newcommand{\itref}[1]{\eqref{#1}}
\def\newnotes{
\begin{remarks}
\thenotes.
}
\def\writenote{
\vspace{10pt} \thenotes.
}
\newcommand{\putqed}{\pushQED{\qed}\popQED}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\newcommand{\fillinmath}[1]{\mathchoice{\underline{\displaystyle \phantom{\ \,#1\ \,}}}{\underline{\textstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptscriptstyle\phantom{\ \,#1\ \,}}}}
\)
Section 10.2 Binomial Coefficients
The binomial coefficient \(\binom n k = \frac{ 1 }{ k! } n(n-1)(n-2) \cdots (n-k+1)\) is a natural candidate for being explored analytically, as the binomial theorem
\begin{equation*}
(x+y)^n \ = \ \sum_{k=0}^n \binom n k x^k \, y^{n-k}
\end{equation*}
(for \(x,y \in \C\) and \(n \in \Z_{ \ge 0 }\) ) tells us that \(\binom n k\) is the coefficient of \(z^k\) in \((z+1)^n\text{.}\) You will derive two sample identities in the course of the exercises below.
Convince yourself that
\begin{equation*}
\binom{n}{k} \ = \ \frac 1 {2 \pi i} \int_\gamma \frac{
(z+1)^{n} }{ z^{k+1} } \, \diff{z}
\end{equation*}
where \(\gamma\) is any simple closed piecewise smooth path such that 0 is inside \(\gamma\text{.}\)
Derive a recurrence relation for binomial coefficients from the fact that
\(\frac 1 z + 1 = \frac{ z+1 }{ z }\text{.}\) (
Hint : Multiply both sides by
\(\frac{ (z+1)^n }{ z^k }\text{.}\) )
Now suppose \(x \in \R\) with \(|x|\lt 1/4\text{.}\) Find a simple closed path \(\gamma\) surrounding the origin such that
\begin{equation*}
\s \left( \frac{ (z+1)^2 }{ z } \, x \right)^k
\end{equation*}
converges uniformly on \(\gamma\) as a function of \(z\text{.}\) Evaluate this sum.
Keeping
\(x\) and
\(\gg\) from
3 , convince yourself that
\begin{equation*}
\s \binom{2k}{k} x^k \ = \ \frac 1 {2 \pi i} \s \int_\gamma
\frac{ (z+1)^{2k} }{ z^{k+1} } \, x^k \, \diff{z} \, \text{,}
\end{equation*}
Use (
3 ) to interchange summation and integral, and use the Residue
Theorem 9.2.2 to evaluate the integral, giving an identity for
\(\s \binom{2k}{k} x^k\text{.}\)